CAMBRIDGE

international examinations

November 2003

GCE A AND AS LEVEL

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT: 9709/04

MATHEMATICS
Paper 4 (Mechanics 1)

Page 1	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	4

1
(i) The force is 320 N
(ii) For using Newton's second law (3 terms needed)
$320-\mathrm{R}=100 \times 0.5$

Resistance is 270 N
(i) Speed is $20 \mathrm{~ms}^{-1}$
(ii) For using $s=1 / 2 g t^{2}$ $45=1 / 210 t^{2}$

Time taken is 3 s
(iii) For using $v^{2}=u^{2}+2 g s \quad\left(40^{2}=30^{2}+2 \times 10 s\right)$

Distance fallen is 35 m
(i) For using the idea of work as a force times a distance ($25 \times 2 \cos 15^{\circ}$)

Work done is 48.3 J
(ii) For resolving forces vertically (3 terms needed)
$N+25 \sin 15^{\circ}=3 \times 10$
($\sqrt{ } \cos$ instead of \sin following \sin instead of \cos in (i))
Component is 23.5 N
(i) KE (gain) $=1 / 20.15 \times 8^{2}$

For using PE loss $=$ KE gain
Height is 3.2 m
(ii) For using WD is difference in PE loss and KE gain
$\mathrm{WD}=0.15 \times 10 \times 4-1 / 20.15 \times 6^{2}$

Work Done is 3.3 J

SR For candidates who treat $A B$ as if it is straight and vertical (implicitly or otherwise)
(i) $s=8^{2} \div(2 \times 10)=3.2$ Max 2 out of 6 marks.
(ii) $a=6^{2} \div(2 \times 4)=4.5$ and $R=0.15 \times 10-0.15 \times 4.5=0.825$ and $\mathrm{WD}=4 \times 0.825=3.3$

M1
B1
M1
A1 $\sqrt{ }$
A1 3
B1 1

M1

A1 2
M1
A1 2

M1
A1 2

M1
A1 $\sqrt{ }$

A1 3

B1

A1 3
M1

A1

A1 3

Page 2	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	$\mathbf{4}$

5

6
(i) For applying Newton's second law to A or to B (3 terms needed)
$T-0.6=0.4 a$ or $0.1 g-T=0.1 a$ A1

For a second of the above 2 equations or for
$0.1 g-0.6=0.5 a \quad$ [Can be scored in part (ii)] B1
(Sign of a must be consistent with that in first equation)
Tension is 0.92 N
A1 4
(ii) $\quad a=0.8$

B1
For using $v=a t \quad$ M1
Speed $=1.2 \mathrm{~ms}^{-1}$
A1 3
(i) $\quad T_{\mathrm{BM}}=T_{\mathrm{AM}}$ or $T_{\mathrm{BM}} \cos 30^{\circ}=T_{\mathrm{AM}} \cos 30^{\circ}$

For resolving forces at M horizontally $\left(2 T \sin 30^{\circ}=5\right)$ or for using the sine rule in the triangle of forces
$\left(T \div \sin 60^{\circ}=5 \div \sin 60^{\circ}\right)$
or for using Lami's theorem $\left(T \div \sin 120^{\circ}=5 \div \sin 120^{\circ}\right)$
Tension is 5 N
A.G.

A1 3
(ii) For resolving forces on B horizontally $\left(N=T \sin 30^{\circ}\right)$ or from symmetry $(N=5 / 2)$ or for using Lami's theorem $\left(N \div \sin 150^{\circ}=5 \div \sin 90^{\circ}\right)$

For resolving forces on B vertically (3 terms needed) or for using Lami's theorem M1
$0.2 \times 10+F=T \cos 30^{\circ}$ or
$(0.2 g+F) \div \sin 120^{\circ}=T \div \sin 90^{\circ}$
For using $F=\mu R$
$(2.33=2.5 \mu) \quad$ M1
Coefficient is 0.932
A1 5

B1 $\sqrt{ }$

7 (i) For using the idea that area represents the distance travelled.
For any two of $1 / 2 \times 100 \times 4.8,1 / 2 \times 200(4.8+7.2)$, $1 / 2 \times 200 \times 7.2 \quad(240,1200,720)$

Distance is 2160 m
A1 3

Page 3	Mark Scheme	Syllabus	Paper
	A AND AS LEVEL - NOVEMBER 2003	9709	4

(ii) For using the idea that the initial acceleration is the gradient of the first line segment or for using $v=a t(4.8=100 a)$ or $v^{2}=2 a s\left(4.8^{2}=2 a \times 240\right)$ M1

Acceleration is $0.048 \mathrm{~ms}^{-2}$
A1 2
(iii) $a=0.06-0.00024 t$

B1
Acceleration is greater by $0.012 \mathrm{~ms}^{-2}$ [$\sqrt{ }$ for $0.06-$ ans(ii)
(must be +ve) and/or wrong coefficient of t in $a(t)$]
B1 $\sqrt{ } \quad 2$
[Accept 'acceleration is 1.25 times greater']
(iv) $\quad B$'s velocity is a maximum when $0.06-0.00024 t=0$
[$\sqrt{ }$ wrong coefficient of t in $a(t)$]
For the method of finding the area representing $s_{A}(250) \quad$ M1

$$
\begin{align*}
& 240+1 / 2(4.8+6.6) 150 \quad \text { or } \tag{1095}\\
& 240+\left(4.8 \times 150+1 / 20.012 \times 150^{2}\right)
\end{align*}
$$

A1

For using the idea that S_{B} is obtained from integration
$0.03 t^{2}-0.00004 t^{3}$
A1
Required distance is 155 m
A1 $\sqrt{ } 6$
($\sqrt{ }$ dependent on both M marks)

